Vulnerability Monitor

The vendors, products, and vulnerabilities you care about

CVE-2021-29549


TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a runtime division by zero error and denial of service in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/6f26b3f3418201479c264f2a02000880d8df151c/tensorflow/core/kernels/quantized_add_op.cc#L289-L295) computes a modulo operation without validating that the divisor is not zero. Since `vector_num_elements` is determined based on input shapes(https://github.com/tensorflow/tensorflow/blob/6f26b3f3418201479c264f2a02000880d8df151c/tensorflow/core/kernels/quantized_add_op.cc#L522-L544), a user can trigger scenarios where this quantity is 0. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.


Published

2021-05-14T20:15:12.853

Last Modified

2024-11-21T06:01:21.570

Status

Modified

Source

[email protected]

Severity

CVSSv3.1: 2.5 (LOW)

CVSSv2 Vector

AV:L/AC:L/Au:N/C:N/I:N/A:P

  • Access Vector: LOCAL
  • Access Complexity: LOW
  • Authentication: NONE
  • Confidentiality Impact: NONE
  • Integrity Impact: NONE
  • Availability Impact: PARTIAL
Exploitability Score

3.9

Impact Score

2.9

Weaknesses
  • Type: Secondary
    CWE-369
  • Type: Primary
    CWE-369

Affected Vendors & Products
Type Vendor Product Version/Range Vulnerable?
Application google tensorflow < 2.1.4 Yes
Application google tensorflow < 2.2.3 Yes
Application google tensorflow < 2.3.3 Yes
Application google tensorflow < 2.4.2 Yes

References