Vulnerability Monitor

The vendors, products, and vulnerabilities you care about

CVE-2021-29566


TensorFlow is an end-to-end open source platform for machine learning. An attacker can write outside the bounds of heap allocated arrays by passing invalid arguments to `tf.raw_ops.Dilation2DBackpropInput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/afd954e65f15aea4d438d0a219136fc4a63a573d/tensorflow/core/kernels/dilation_ops.cc#L321-L322) does not validate before writing to the output array. The values for `h_out` and `w_out` are guaranteed to be in range for `out_backprop` (as they are loop indices bounded by the size of the array). However, there are no similar guarantees relating `h_in_max`/`w_in_max` and `in_backprop`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.


Published

2021-05-14T20:15:13.647

Last Modified

2024-11-21T06:01:23.757

Status

Modified

Source

[email protected]

Severity

CVSSv3.1: 2.5 (LOW)

CVSSv2 Vector

AV:L/AC:L/Au:N/C:P/I:P/A:P

  • Access Vector: LOCAL
  • Access Complexity: LOW
  • Authentication: NONE
  • Confidentiality Impact: PARTIAL
  • Integrity Impact: PARTIAL
  • Availability Impact: PARTIAL
Exploitability Score

3.9

Impact Score

6.4

Weaknesses
  • Type: Primary
    CWE-787

Affected Vendors & Products
Type Vendor Product Version/Range Vulnerable?
Application google tensorflow < 2.1.4 Yes
Application google tensorflow < 2.2.3 Yes
Application google tensorflow < 2.3.3 Yes
Application google tensorflow < 2.4.2 Yes

References