Vulnerability Monitor

The vendors, products, and vulnerabilities you care about

CVE-2021-37647


TensorFlow is an end-to-end open source platform for machine learning. When a user does not supply arguments that determine a valid sparse tensor, `tf.raw_ops.SparseTensorSliceDataset` implementation can be made to dereference a null pointer. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L240-L251) has some argument validation but fails to consider the case when either `indices` or `values` are provided for an empty sparse tensor when the other is not. If `indices` is empty, then [code that performs validation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/data/sparse_tensor_slice_dataset_op.cc#L260-L261) (i.e., checking that the indices are monotonically increasing) results in a null pointer dereference. If `indices` as provided by the user is empty, then `indices` in the C++ code above is backed by an empty `std::vector`, hence calling `indices->dim_size(0)` results in null pointer dereferencing (same as calling `std::vector::at()` on an empty vector). We have patched the issue in GitHub commit 02cc160e29d20631de3859c6653184e3f876b9d7. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.


Published

2021-08-12T19:15:08.963

Last Modified

2024-11-21T06:15:36.170

Status

Modified

Source

[email protected]

Severity

CVSSv3.1: 7.7 (HIGH)

CVSSv2 Vector

AV:L/AC:L/Au:N/C:N/I:N/A:P

  • Access Vector: LOCAL
  • Access Complexity: LOW
  • Authentication: NONE
  • Confidentiality Impact: NONE
  • Integrity Impact: NONE
  • Availability Impact: PARTIAL
Exploitability Score

3.9

Impact Score

2.9

Weaknesses
  • Type: Primary
    CWE-476

Affected Vendors & Products
Type Vendor Product Version/Range Vulnerable?
Application google tensorflow < 2.3.4 Yes
Application google tensorflow < 2.4.3 Yes
Application google tensorflow 2.5.0 Yes
Application google tensorflow 2.6.0 Yes
Application google tensorflow 2.6.0 Yes
Application google tensorflow 2.6.0 Yes

References